Contribution from the Laboratoire de Physicochimie Inorganique, URA 419, CNRS, Universite P. et M. Curie, F74, 4 Place Jussieu, 75252 Paris Cedex 05, France

Dawson Type Heteropolyanions. 1. Multinuclear (31P, 51V, la3W) NMR Structural Investigations of Octadeca(mo1ybdotungstovanado)diphosphates α -1,2,3-[P₂MM'₂W₁₅O₆₂]^{*n*} (M, M' = Mo, V, W): Syntheses of New Related **Compounds'**

Mostefa Abbessi, Roland Contant,* Rene Thouvenot, and Gilbert Herve

Received July 26, 1990

The mixed binary anions dimolybdopentadecatungstodiphosphate, 1,2- $[P_2Mo_2W_{15}O_{61}]^{10-}$, hexadecatungstodivanadodiphosphate,
1,2- $[P_2V_2W_{16}O_{62}]^{8-}$, and the ternary molybdotungstovanadophosphates 1,2-3- $[P_2Mo_2VW_{15}$ derived from the Dawson anion α -[P₂W₁₈O₆₂]⁶ by formal substitution in one polar W₃O₁₃ group, have been synthesized. The lacunary dimolybdo anion $P_2M_02W_1s$, obtained by selective W elimination and then partial Mo addition, is the precursor for the saturated $P_2M_0^2W_{16}$ and $P_2M_0^2W_{15}$. The divanado anions $P_2V_2W_{16}$ and $P_2M_0V_2W_{15}$ were obtained by V substitution from P_2W_{18} and P₂Mo₃W₁₅, respectively. All the octadeca(molybdotungstovanado)diphosphates α -(1,2,3)-[P₂MM'₂W₁₅O₆₂]^{\sim} (M, M' = Mo, V, W) were characterized by electrochemistry and multinuclear (³¹P, ⁵¹V, ¹⁸³ incremental formula was established to calculate the ³¹P chemical shift of the P(1) phosphorus atom in the half-anion PMM'₂W₆ substituted in the polar position. Moreover, a simple additive model allows one to predict the ³¹P chemical shifts of Dawson polyanions substituted in the equatorial position. The reactivity of 4-P₂MW₁₇ toward alkaline degradation to get P₂MW₁₄ is discussed on this basis: vanadium(V) in the 4-location directs the departure of the W_3O_{13} in the other half-anion (16-18-locations) whereas molybdenum(VI) has no directing effect. The $183W$ chemical shifts are discussed also in relation with the nature and the location of the substituting atoms; although considerably remote from the polar substituted site, the tungsten atoms in the the location of the substituting atoms; although considerably remote from the polar substituted site, the tungsten atoms in the opposite polar group are generally as well affected (shielded) as those directly bound (μ -

Introduction

The heteropolyanions are of continuing interest as heterogeneous and homogeneous catalysts.^{2,3} Among them the tungstovanadophosphates and molybdovanadophosphates have been long used, and several new species have been described in recent years.⁴ With a view to obtaining more stable molybdovanadic species, we have attempted to prepare numerous octadodeca(mo1ybdotungstovanado)diphosphates with Dawson structure⁵ (α isomer) (Figure 1). This work concerns all the 1,2,3- $[P_2MM_2W_{15}O_{62}]^T$ (abbreviated as $P_2MM_2W_{15}$ (M, $M' = Mo, V, W$) anions.⁶ Until now all the known species, i.e. the $1,2,3-P_2V_nW_{18-n}$ ($n =$ 1-3) tungstovanadophosphates isolated by Harmalker, Leparulo, and Pope^{7a} and the $1-P_2Mow_{17}$ and $1,2,3-P_2Mo_3W_{15}$ molybdotungstophosphates, have been prepared by addition of vanadyl or acidified molybdate to the lacunar (1)- $P_2\square W_{17}$ (trivial name α_2 ⁸ and (1,2,3)- $P_2\Box_3W_{15}$ ⁹ tungstophosphates. We propose herein new routes to obtain $P_2M_2W_{16}^{10}$ and $P_2MM_2W_{15}$ (M, M' = Mo, **V)** compounds, which were characterized by 31P NMR spec-

- istry Concepts 8; Springer-Verlag: Berlin, 1983.
(a) Misono, M.; Konishi, Y.; Matoncobu, F.; Yoneda, Y. Chem. Lett.
1978, 709. (b) Baba, T.; Sakai, J.; Watanebe, H.; Ono, Y. *Bull. Chem.*
Soc. Jpn. **1982**, 55, 2555. (c
- (a) Domaille, P. J.; Watunga, G. *Inorg. Chem.* **1986,** *25,* 1239. (b) Domaille, P. J.; Harlow, R. L. *J. Am. Chem. Soc.* **1986,** *108,* 2108. (c)
-
- Finke, R. G.; Rapko, B.; Domaille, P. J. Organometallics 1986, 5, 175.
Dawson, B. Acta Crystallogr. 1953, 6, 113.
The tungsten atoms in α -P₂W₁₈ (Figure 1) are numbered according to
the IUPAC recommendations (Jeanni *Chem.* **1987,** *59,* 1529). In order to make easily understandable the comparison between molybdenum- and vanadium-substituted anions, we adopted the following rules: (i) whatever its nature, the substituting atom in primarily substituted compounds (i.e. obtained directly from P_2W_{18}) is given the lowest index; (ii) this index is maintained in the subsequent modifications of the anion (partial hydrolysis or substitution); (iii) in the lacunary species, the vacancies (missing W atoms) are numbered **too** and symbolized as *0* in the formula of the anion. For
- example, P₂W₁₅ will be written as (1,2,3)-P₂D₃W₁₅.
(a) Harmalker, S. P.; Leparulo, M. A.; Pope, M. T. *J. Am. Chem. Soc.*
1983, *105*, 4286. (b) Leparulo-Loftus, M. A.; Pope, M. T. *Inorg. Chem.* (7) **1987,** *26,* 21 12.
-
- Contant, R.; Ciabrini, J. P. *J. Chem. Res.* 1977, (S) 222, (M) 2601.
Ciabrini, J. P.; Contant, R.; Fruchart, J. M. *Polyhedron* 1983, 2, 1229.
Harmalker et al.⁷* have prepared P₂V₂W₁₆ from "P₂W₁₆" that should
- be present in a very small amount in solid P₂W₁₅. Indeed P₂W₁₆ is an unstable intermediary observed during the spontaneous transformation of P₂W₁₅ into (1)-P₂OW₁₇ (Contant, R.; Thouvenot, R. Unpublished wo

troscopy; their structures have been confirmed by ^{183}W NMR spectroscopy.

Experimental Section

Potassium salts of α -P₂W₁₈¹¹ (1)-P₂QW₁₇ (α ₂)¹¹ (4) -P₂ \Box W₁₇ (α_1) ,¹¹ 1,2,3-P₂Mo₃W₁₅,⁹ 1- and 4-P₂MoW₁₇,⁸ and 1,2,3- $P_2V_3\overline{W}_{15}^{12}$ and the sodium salt of (1,2,3)- $P_2\Box_3W_{15}^{11}$ were prepared by published methods. Preparations.

 $1, 2 \cdot K_{10} P_2 Mo_2W_{15}O_{61} \cdot 18H_2O^{13}$ A solution of 45 g (10 mmol) of Nal2P2WlsOs6(aq.) In 500 ml of 1M LiCl and **IO** mL of IM HCI was simultaneously treated with 20 mL (20 mmol) of 1 M $Li₂MoO₄$ and 50 mL of IM HCI. The pH was at about 4.5. Then 200 mL of saturated potassium chloride solution were added. The white crystalline precipitate was filtered off and recrystallized from the minimum of hot water. Anal. Calcd. for $K_{10}P_2M_{02}W_{15}O_{61}$ 18H₂O: K, 8.31; P, 1.32; Mo, 4.08; W 58.6; H20, 6.86. Found: K, 8.23; P, 1.34; Mo, 3.9; W, 58.6; H20, 6.97. The 3iP NMR spectrum exhibits two equal peaks at -5.09 and -13.92 ppm. The crude yield was higher than 80%, which is similar for all compounds obtained from the addition of molybdate or vanadate.

For the following compounds the polarographic data are given in Table I and the ³¹P and ⁵¹V NMR data in Tables II and III.

1,2- $K_6P_2Mo_2W_{16}O_{62}$.xH₂O (Purity 75%). A solution of 9.5 g (2) mmol) of $K_{10}P_2Mo_2W_{15}O_{61}$ 18H₂O in a mixture of 160 mL of 1 M LiCl and 40 mL of molar acetic acid-lithium acetate buffer was treated with 2 mL (2 mmol) of 1 M Li2W04 and 100 mL of 1 M HCI. While the mixture was vigorously stirred, 50 **g** of solid KCI was added. The yellow precipitate was filtered off and recrystallized from the minimum amount Mo, 4.09, W, 62.7; H20, 5.75. Found: K, 4.86; P, 1.34; Mo, 4.0; W, 63.1; **H20,** 5.64. Although the analysis agrees with the above proposed formula, ³¹P and ¹⁸³W NMR spectroscopies show that this salt contains no more than 75% of $P_2M_0^2W_{16}$; the impurities were identified as P_2W_{18} , $1-P_2MoW_{17}$, and $1,2,3-P_2Mo_3W_{15}$ (see below). Attempts to obtain pure $P_2Mo_2W_{16}$ by selective precipitation or by recrystallization failed, all these anions being isocharged. Moreover, the aqueous solution evolves by disproportionation of $P_2Mo_2W_{16}$ into $1-P_2MoW_{17}$ and $1,2,3-$ Of water. Anal. Calcd for K6P2M02Wi6 **062.1** 5 H2O: K, 5.00; P, I .32; $P_2Mo_3W_1S$.

1,2-3-K₇P₂Mo₂VW₁₅O₆₂.19H₂O.¹³ A sample of 47 **g** (10 mmol) of $K_{10}P_2Mo_2W_{15}O_{61}$ ^{18H₂O was added to a solution of 20 mL (10 mmol)} of 0.5 M $NaVO₃$, 40 mL of 1 M HCl, and 250 mL of water. After dissolution 25 **g** of solid potassium chloride was added. The yellow

- (12) Finke, R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. *J. Am. Chem. SOC.* **1986,** *108,* 2947.
- (13) One reviewer let us know about the following patent: Vasilevskis, J.;
De Deken, J. C.; Saxton, R. J.; Wentrcek, P. R.; Fellmann, J. D.; Kipnis,
L. S. Olefin oxidation catalyst system. PCT Int. Appl. WO 87 01,615, 1987. In it are described the syntheses of compounds formulated $K_{10}P_2W_{15}Mo_2O_{61}$ and $K_7P_2W_{15}Mo_2VO_{62}$ without any characterization.

 (1) Presented in part at the Third Chemical Congress of North America, Toronto, Canada, June 1988. Pope, M. T. Heteropoly and Isopoly Oxometalates. *Inorganic* Chem-

⁽¹¹⁾ Contant, R. *Inorg. Synth.* **1990,** 27, 104.

Figure 1. Idealized structure for α - $[P_2W_{18}O_{62}]$ ⁶⁻ and its substitution derivatives.

crystalline precipitate was filtered off and then air-dried Anal. Calcd for $K_7P_2Mo_2VW_1SO_62.19H_2O$: K, 5.86; P, 1.33; Mo, 4.11; V, 1.09; W, 59.05; H20, 7.32. Found: K, 6.30; P, 1.35: Mo, 4.1; V, 1.1; W, 59.4; H₂O, 7.37.

1-2,3-K_BP₂MoV₂W₁₅O₆₂.18H₂O. A solution of 35 **g** (7.5 mmol) of $K_6P_2Mo_3W_{15}O_{62}$. 14H₂O in 375 mL of water was treated with a mixture of 30 mL of 0.5 M NaVO₃ (15 mmol) and 20 mL of 1 M NaOH (20 mmol). The solution was refluxed for 30 min and then cooled to room temperature, and I25 mL of saturated KCI solution was added. The yellow orange precipitate was filtered off and recrystallized at 5 °C from the minimum amount of acidified water $(pH = 2)$. Anal. Calcd for $K_8P_2MoV_2W_{15}O_{62}18H_2O$: K, 6.71; P, 1.33; Mo, 2.06; V, 2.19; W, 59.1; H₂O, 7.33. Found: K, 6.52; P, 1.36; Mo, 2.2; V, 2.25; W, 58.5; H₂O, 7.47.

Concerning the following three products, Harmalker et al.7a have prepared and isolated the corresponding V(IV) compounds as solid salts. $P_2V_2W_{16}$ was only obtained in a very small amount as a byproduct of $P_2V_3W_{15}^{10}$ The $V(V)$ derivatives were obtained from oxidation of the $V(IV)$ aqueous solutions; they were characterized in solution but not isolated as solid salts.

 $K_{10}P_2W_{17}O_{61}$ 20H₂O in 250 mL of hot water was treated with 45 mL of 0.5 **M** NaVO, (22.5 mmol). The solution was refluxed for 1 h and then cooled to room temperature. A yellow precipitate (mainly $P_2 V W_{17}$) appeared. It was filtered off after 2-3 h, and the filtrate was treated with 100 mL of saturated KCI solution. The precipitate was filtered off after about 1 h and then recrystallized from the minimum amount of water (yield 20 g). Anal. Calcd for K₈P₂V₂W₁₆·18H₂O: K, 6.60; P, 1.31; V, 2.15;W,62.1;H20,6.84. Found: **K,6.58;P,1.31;V,2.2;W,61.4;H20,** 6.91. **1,2-KgP₂V₂W₁₆O₆₂.18H₂O.** A solution of 50 **g** (10 mmol) of α_2 -

 $1-K_7P_2VW_{17}O_{62}$ ⁻18H₂O (α_2). To 140 mL of 0.5 M HCl were added 10 mL of 0.5 M NaVO₃ (5 mmol) and then 25 g (5 mmol) of α_2 -Kl&Wl,061.20H20. After dissolution 22 **g** of KCI was added. The precipitate was filtered off and recrystallized from 30 mL of 0.1 M HCI. Anal. Calcd for $K_7P_2VW_{17}O_{62}$ 18H₂O: K, 5.67; V, 1.06; W, 64.7; H₂O, 6.71. Found: K, 5.80; V, 1.1; W, 63.3; H₂O, 6.52.

4-K₇P₂VW₁₇O₆₂.17H₂O (α_1 **).** To 160 mL of 0.5 M HCI were added 10 mL of 0.5 M NaVO₃ (5 mmol) and then 25 **g** (5 mmol) of α_1 - $K_9LiP_2W_{17}$ -20H₂O. On some occasions the solution was not quite clear so that it was filtered on filter paper. Then 25 g of KCI was added to the filtrate. The precipitate was filtered off and then recrystallized from the minimum amount of 0.1 M HCl. Anal. Calcd for $K_7P_2VW_{17}O_{62}$ 17H₂O: K, 5.69; V, 1.06; W, 65.0; H₂O, 6.36. Found: K, 5.67; V, 1.1; W, 64.7; H₂O, 6.26.

The following three compounds $Na_{12}P_2MoW_{14}O_{56}$, $K_8HP_2MoV_3$ - $W_{14}O_{62}$, and $K_6P_2Mo_4W_{14}O_{62}$ are mixtures of two isomers (see below).

4-Na₁₂P₂MoW₁₄O₃₆.24H₂O. A suspension of 40 **g** (8 mmol) of 4- $K_6P_2MOW_1PO_{62}$ ¹⁴H₂O (α_1) in 80 mL of water was treated with 30 **g** of $NaClO₄·H₂O$. The mixture was cooled by using an ice bath, and the KCIO, was filtered off. The filtrate was treated with 120 mL of 1 M $Na₂CO₃$. The precipitate was decanted and then filtered out on a large sintered glass frit and sucked dry, washed with 20 mL of 1 M NaCl solution, washed twice with 25 mL of ethanol, and air-dried (yield 22 **g).** Anal. Calcd for Na₁₂P₂MoW₁₄O₅₆.24H₂O: Na, 6.36; P, 1.43; Mo, 2.21;
W, 59.4; H₂O, 9.96. Found: Na, 6.19; P, 1.41; Mo, 2.1; W, 60.7; H₂O, 9.83.

4-1.2.3- (or 4-16,17,18-) K₈HP₂MoV₃W₁₄O₆₂.18H₂O. A solution of 100 mL of 1 M HCI and 28 mL (14 mmol) of 0.5 M NaVO, in 200 mL of water was treated with 20 g (4.6 mmol) of $\text{Na}_{12}\text{P}_2\text{MoW}_{14}\text{O}_{56}$.24H₂O.

After the solid had dissolved 100 mL of saturated KCI solution was added. The orange precipitate was filtered off and then air-dried. Anal. Calcd for K₈HP₂MoV₃W₁₄O₆₂·18H₂O: K, 6.93; P, 1.37; Mo, 2.12; V, 3.39; W, 57.0; H,O, 7.17. Found: K. 7.64: P. 1.34: Mo. 2.1: V. 3.15: W, 57.1; H₂O, 6.99.

l,2,3,4 (or **4,16,17,18-) &P2M04W14062*16H20.** A solution of 12 mL (12 mmol) of 1 M $Li₂MoO₄$ in 200 mL of 0.5 M HCI was treated with 17 g (3.9 mmol) of $\text{Na}_{12}\text{P}_2\text{MoW}_{14}\text{O}_{56}$ -24H₂O. After the solid had dissolved 30 **g** of solid KCI was added. The yellowish precipitate was filtered off and air-dried. Anal. Calcd for $K_6P_2Mo_4W_{14}O_{62}$ -16H₂O: K, 5.17; P, 1.37; Mo, 8.46; W, 56.8; **H20,** 6.35. Found: K, 4.95; P, 1.37; Mo, 8.23; W, 57.0; H₂O, 6.20.

4-Na₁₁P₂VW₁₄O₅₆·xH₂O. To a suspension of 20 g (4 mmol) of 4- $K_7P_2VW_{17}O_{62}$ ¹7H₂O in 65 mL of water was added 20 g of NaClO₄. H20. The potassium perchlorate was eliminated by filtration, and the filtrate was treated with 60 mL (60 mmol) of 1 M $Na₂CO₃$. After 1 h the precipitate was filtered off, washed with methanol, and air-dried (yield 3.2 g). Anal. Calcd for $Na_{13}P_2VW_{14}O_{56}$ -25H₂O: V, 1.18; W, 59.4. Found: V, 1.1; W, 59.0.

4,16,17,18-K₈H₂P₂V₄W₁₄O₅₆.19H₂O. To a solution of 30 mL (15) mmol) of 0.5 M NaVO₃ and 500 mL of 0.5 M HCl was added 21.5 g (5 mmol) of $\text{Na}_{13}\text{P}_2\text{VW}_{14}\text{O}_{56}$ (aq). After the solid had dissolved 80 **g** of solid KCI was added. The orange precipitate was filtered off and airdried. Anal. Calcd for $K_8H_2P_2V_4W_{14}O_{62}$ -19 H_2O : K, 7.07; W, 57.8; V, 4.58; H₂O, 7.69. Found: K, 7.37; W, 57.5; V, 4.45; H₂O, 7.59.

16,17,18-4-K,P₂Mo₃VW₁₄O₆₂.18H₂O. A solution of 60 mL of 1 M HCl and 6 mL (6 mmol) of 1 M $Li₂M₀O₄$ diluted with 40 mL of water was treated with 8 g (1.84 mmol) of Na₁₃P₂VW₁₄O₅₆(aq). After the solid had dissolved 25 g of KCI was added. The precipitate was filtered off and air-dried. Anal. Calcd for $K_7P_2Mo_3VW_{14}O_{62'}18H_2O$: K, 6.04; P, 1.36; W, 56.4; Mo, 6.30; V, 1.12; H₂O, 7.08. Found: K, 6.37; P, 1.34; W, 56.9; Mo, 6.15; V, 1.05; H₂O, 7.11.

Analyses. Tungsten molybdenum, and vanadium were determined by polarography in an acetate buffer⁸ of their respective pyrocatechol com-
plexes. Potassium was determined by gravimetry of the tetraphenylborate salt, sodium by atomic absorption spectrophotometry, and phosphorus by spectrometry of the molybdovanadophosphate.¹⁴ Water content was determined by thermogravimetric analysis.

NMR Measurements. The solutions for ¹⁸³W NMR measurements were obtained by dissolving the potassium salts in aqueous saturated $LiClO₄$ solution, filtering off the $KClO₄$ precipitate, and adding 10% heavy water for field frequency lock. ¹⁸³W NMR spectra were recorded in 10-mm o.d. tubes on a Bruker WM 250 or Bruker AM 500 apparatus operating at 10.4 or 20.8 MHz, respectively. The spectral width was generally restricted to 1000-1500 Hz (about 100-150 ppm) at 10.4 MHz, allowing a digitalization better than 0.2 Hz/pt after a 16K points Fourier transformation, but at higher frequency (20.8 MHz) the larger spectral width (2000-3000 Hz) leads to poorer digital resolution and consequently to a lower precision of the coupling constant values. Acquisiton time was in the range 1.5-2.5 **s,** which, according to the required number of scans (between 1000 and 20000, depending on the number of lines and on the purity; see below), allowed us to get good quality spectra in a few hours, sometimes even in less than 0.5 h. Chemical shifts were measured with reference to an external 2 M $Na₂WO₄$ solution in alkaline D_2O by using saturated dodecatungstosilicate acid $(H_4SiW_{12}O_{40})$ in D₂O solution as a secondary standard (δ = -103.8 ppm^{15a}).

 ^{31}P and ^{51}V NMR spectra were recorded in 10-mm o.d. tubes on a Bruker WM 250 apparatus operating at 101.2 and 65.7 MHz, respectively, in both cases in the Fourier transform mode. The 31P chemical shifts were measured on 0.02 M solutions of the polyanions in aqueous 1 M LiCl (10% D₂O) and were referenced to external 85% H₃PO₄ by the substitution method. The ⁵¹V chemical shifts and line widths were measured on the concentrated (and viscous) solutions already used for the 183 W NMR spectra and were externally referenced to neat VOCl₃ by using VO_4^3 - solution in alkaline D_2O as a secondary standard ($\delta =$ -536 ppm^{16a}).

Results

The pathways connecting the species investigated in this work are summarized in Schemes I and II. All the $[P_2MM'_{2}W_{15}O_{62}]^{T}$

~~~ ~ ~ ~~~~

<sup>(14)</sup> Charreton, B.; Chauveau, F.; Bertho, G.; Courtin, P. *Chim. Anal.* **1965**, *47*, 17.<br>
(15) (a) Acerete, R.; Hammer, C. F.; Baker, L. C. W. J. Am. Chem. Soc.

**<sup>(</sup>IS)** (a) Acerete, R.; Hammer, C. F.; Baker, L. C. W. *J. Am. Chem. Soc. 1979, 101,* 267. (b) Acerete, R.; Hammer, C. F.; Baker, L. C. *W.* 3. *Am. Chem. SOC. 1982, 104,* 5384. (c) Acerete, R.; Hammer, C. F.; Baker, L. C. W. *Inorg. Chem.* **1984,** *23,* 1478.

<sup>(16) (</sup>a) Harris, R. K.; Mann, B. E. *NMR and the Periodic Table*; Academic<br>Press: New York, 1978. (b) Brevard, C.; Granger, P. *Handbook of*<br>*High Resolution Multinuclear NMR*; Wiley & Sons: New York, 1981.



**Scheme I1** 

$$
p_2M_0 \sqrt[3]{W_0}
$$
  $\sqrt[3]{W_0}$   $\sqrt[3]{W_0}$ 

**Table 1.** Polarographic Data" for

**a-Octadeca(mo1ybdotungstovanado)** diphosphates at pH 1 **.O** (0.1 M HCI; 0.9 M NaCl)

| anion                                              | $E_{1/2}$ , V vs SCE |            |            |
|----------------------------------------------------|----------------------|------------|------------|
| $\alpha$ -P <sub>2</sub> W <sub>18</sub>           | $+0.04(1)b$          | $-0.14(1)$ |            |
| $4 - P_2M_0W_{12}$                                 | $+0.39(1)$           | $-0.08(1)$ |            |
| $1-P, MoW,$                                        | $+0.25(1)$           | $-0.15(1)$ |            |
| 1,2-P <sub>2</sub> Mo <sub>2</sub> W <sub>16</sub> | $+0.27(1)$           | $+0.10(1)$ |            |
| $1, 2, 3 - P_2M_0, W_{15}$                         | $+0.28(1)$           | $+0.14(1)$ | $-0.13(1)$ |
| $1, 2 - 3 - P_2 M_0, VW_1$                         | $+0.46(1)$           | $+0.05(2)$ |            |
| $1 - 2, 3 - P, MoV, W,$                            | $+0.37(2)$           |            |            |
| $1, 2, 3 - P, V, W,$                               | $+0.42(1)$           | $+0.28(2)$ |            |
| $1,2-P_2V_2W_{16}$                                 | $+0.36(2)$           |            |            |
| $1 - P_2 V W_{17}$                                 | $+0.41(1)$           | $+0.15(1)$ |            |
| $4-P, VW,$                                         | $+0.49(1)$           | $+0.20(1)$ |            |

*a***Rotating platinum electrode; uncertainty**  $\pm 0.03$  **V.** *b***Number of** electrons confirmed by controlled potential coulometry for the first waves.

anions have **been** characterized by polarography (Table I), by 31P and <sup>51</sup>V NMR spectroscopy (Table II), and by <sup>183</sup>W NMR spectroscopy (Tables IV and V). The <sup>31</sup>P NMR results for [P2MM'3W14062]"- species are presented in Table **111.** These will be introduced at appropriate place in the section that follows.

#### **Discussion**

**Characterization.** For all the  $K_xP_2MM_2'W_{15}O_{62}$  species the IR spectra are very similar<sup>7a</sup> and do not allow one to unambiguously identify a given compound. The Dawson type molybdotungstophosphates<sup>17</sup> and tungstovanadophosphates<sup>7a</sup> have been already characterized by polarography or cyclic voltammetry on a glassy-carbon electrode. With the molybdotungstovanadophosphates the potentials of the first waves, assigned to the  $V(V)/V(IV)$  couple, are little changed by the presence of molybdenum (Table I). Finally, <sup>31</sup>P NMR spectroscopy provides the best identification because of the existence of two lines of equal intensities and a large chemical shift range (ca. **7** ppm between extreme values).<sup>18</sup> It easily allows one to check the purity and to identify the impurities.

<sup>31</sup>P NMR Spectroscopy of the 1,2,3-[P<sub>2</sub>MM'<sub>2</sub>W<sub>15</sub>O<sub>62</sub>]<sup>*r*</sup> Anion  $(M, M' = Mo, V, W)$ . The gradual progression of the chemical shifts as the number of molybdenum atoms<sup>18</sup> or of vanadium atoms7a increases is well established. The same trend is observed in the progressive substitution of vanadium for molybdenum (Table  $11;$  Figure 2). The high-field peak has been assigned<sup>7a,18</sup> to the P(2) phosphorus atom in the unsubstituted half-anion. The low-field chemical shift corresponding to  $P(1)$  does not vary linearly as the number of substituted atoms. But the variation of the P(1) chemical shift when one atom M' is substituted for M to give the triad  $M_{3-n}M'_n$  can be expressed by the following empirical formula:

$$
\Delta \delta = \delta_n - \delta_{n-1} = A + (n-1)B \qquad n = 1-3 \tag{1}
$$



Figure 2. Variation of the <sup>31</sup>P chemical shifts in substituted Dawson anions with the number of molybdenum and vanadium atoms.





"Reference 18. The differences between **our** values and those reported in refs 18 and 7, all without bulk magnetic susceptibility correction,16 arise mainly from the kind of spectrometer used: permanent<sup>18</sup> or electromagnet<sup>7a</sup> with horizontal field instead of our superconducting magnet with vertical field.  $\delta$ The values in parentheses were calculated with eq 1 given in the text. **Reference 7a.** The line widths reported in these reference for 51V are systematically about 3 times smaller in accordance with the fact that our concentrated solutions are more viscous and the quadrupolar relaxation of the vanadium solution is more rapid in our case.  $d$  These values were given for the compound erroneously formulated  $P_2Mo_2W_{16}$ .

where *A* and *B* are constants that depend on both M and M'. The empirical values of *A* and *B* are respectively (i)  $+1.60$  and  $+0.46$ when vanadium is substituted for tungsten, (ii) **+0.75** and +0.13 when molybdenum is substituted for tungsten, and (iii)  $+0.92$  and +O. **16** when vanadium **is** substituted for molybdenum.

Experimental and calculated (according to eq 1)  $^{31}P$  chemical shifts are reported in Table **11. In** the formula (1) the coefficient Experimental and calculated (according to eq 1) <sup>31</sup>P chemical shifts are reported in Table II. In the formula (1) the coefficient *A* expresses the intrinsic effect of the M  $\rightarrow$  M' substitution and *A* expresses the int the coefficient *B* expresses the influence of neighboring substituted M' atoms.

**31P NMR Spectroscopy of the 1,2,3-4- (or 4-16,17,18-)**   $[P_2MM'_{3}W_{14}O_{62}]^{\prime\prime}$  Anion (M, M' = Mo, V). These species are obtained from  $4-P_2VW_{17}$  or  $4-P_2M\text{o}W_{17}$  by the same process as

<sup>(17)</sup> Contant, R.; Ciabrini, **J. P.** *J. Inorg. Nucl. Chem.* **1981,** *43,* 1525. **(18)** Massart, R.; Contant, R.; Fruchart, **J. M.:** Ciabrini, J. P.; **Fournier, M.**  *Inorg. Chem.* 1977, 16, 2916.



**Figure 3.** Idealized structures for both 1,2,3,4- and 4,16,17,18- $P_2M_4W_{14}$ **isomers. Hatched octahedra correspond to the** M (Mo, **V) atoms.** 

that for  $P_2M_3W_{15}$  from  $P_2W_{18}$ . The hydrolysis by sodium carbonate leads to the departure of a polar  $W_3O_{13}$  group to give a trivacant compound **P2O3WI5, P2n3VWI4,** or **P2n3MoW,,** whose lacuna can be refilled by a Mo<sub>3</sub>O<sub>13</sub> or V<sub>3</sub>O<sub>13</sub> group. Because in  $P_2W_{18}$  (symmetry  $D_{3h}$ ) the two polar  $W_3O_{13}$  groups are equivalent, there is only one  $P_2\Box_3W_{15}$  and only one  $P_2M_3\dot{W}_{15}$ . On the contrary, in  $4-P_2MW_{17}$  (symmetry  $C_1$ ) the two polar  $W_3O_{13}$  groups are inequivalent and therefore two  $P_2\Box_3MW_{14}$  and two  $P_2MM'_3W_{14}$  compounds can be expected (Figure 3). The problem is then to determine if **Mo** or **V** in an equatorial site influences the departure of tungsten atoms from polar sites. In the case of  $M = Mo$ , we obtained a mixture of two  $P_2Mo_4W_{14}$  (and a mixture of two  $P_2Mov_3W_{14}$ , as shown by its <sup>31</sup>P NMR spectrum, which presents four lines of the same height. On the contrary, in the case of  $M = V$ , only one  $P_2V_4W_{14}$  (and one  $P_2Mo_3VW_{14}$ ) isomer is obtained (two-line <sup>31</sup>P NMR spectrum). In order to determine the nature of this isomer, we assumed that the **31P** chemical shifts in  $P_2MM'_3W_{14}$  can be calculated by using a simple additive model: the difference of chemical shifts from  $\bar{P}_2W_{18}$  will be considered as the sum of their respective values for  $1,2,3-P_2M_3W_{15}$  and  $4-P<sub>2</sub>M'W<sub>17</sub>$ . This hypothesis does not take into account the mutual influence of neighboring polar-equatorial substitutions. In order to check the validity of this model, we calculated the chemical shifts of both  $P_2M_0V_3W_{14}$  isomers. For the 4-1,2,3- $P_2M_0V_3W_{14}$ isomer, (i) the equatorial molybdenum atom (4-position) involves as in  $4-P_2Mow_{17}$  a downfield shift  $(-11.60 + 12.44 = +0.84$  ppm) for the phosphorus atom **P( 1)** in the same half-anion and a small shift  $(-12.51 + 12.44 = -0.07$  ppm) for the phosphorus atom  $P(2)$ in the opposite half-anion, (ii) the three polar vanadium atoms **V**(1,2,3) involve as in 1,2,3- $P_2V_3W_1s$  a downfield shift of -6.25  $+ 12.44 = +6.19$  ppm for  $P(1)$  in the same half-anion and an upfield shift of  $-13.90 + 12.44 = -1.46$  ppm for  $P(2)$ . So for  $4-1,2,3-P_2MoV_3W_{14}$ , the low-field line would appear at  $-12.44$  $+ 6.19 + 0.84 = -5.41$  ppm and the upfield line would appear at **-12.44** - **1.46** - **0.07** = **-13.97** ppm. For the **4-16,17,18-**   $P_2M_0V_3W_{14}$  isomer, the low-field line would appear at  $-12.44 +$  $6.19 - 0.07 = -6.32$  ppm and will be assigned to the phosphorus atom  $P(2)$  in the same half-anion as the  $V_3O_{13}$  group. The high-field line should be observed at **-1 2.44** - **1.46** + **0.84** = **-1 3.06**  ppm and will be assigned to the phosphorus atom **P(1)** in the **PMoW,** half-anion. Comparison with the experimental spectra (Table 111) shows a good agreement between observed and calculated values (maximal deviation less than 0.1 ppm). Such a **good agreement is also** obtained **for** both **P2Mo4WI4** isomers. These results allow **us** to conclude that, though very simple, this model could predict the <sup>31</sup>P chemical shifts of the other mixed Dawson anions reported in this paper. When applied to  $P_2V_4W_{14}$ , this model gives the following predicted values: **-5.64** and **-14.36**  ppm for the **1,2,3,4-isomer** and **-6.71** and **-13.29** ppm for the **4,16,17,18-isomer.** The observed chemical shifts of the unique isomer **(-6.71** and **-1 3.20** ppm, Table **111)** agree only with the latter one. In the same way the  $P_2Mo_3VW_{14}$  compound was identified to be the **16,17,18-4-isomer.** In conclusion it appears that vanadium located in the equatorial 4-position directs the departure of the  $W_3O_{13}$  group in the opposite half-anion, contrary to the molybdenum atom, which has no directive effect. This behavior could be related to a localization of the supplementary

**Table 111. Comparison between Observed and Calculated "P NMR Data for Tetra(molybdovanado)tetradecatungstodiphosphates** 

|                                                              |          |                       | calcd <sup>a</sup> $\delta$ <sup>(31</sup> P) |          |
|--------------------------------------------------------------|----------|-----------------------|-----------------------------------------------|----------|
| anion                                                        |          | obsd $\delta(^{31}P)$ | P(1)                                          | P(2)     |
| $4,16,17,18-P_2V_4W_{14}$                                    | $-6.71$  | $-13.20$              | $-13.29$                                      | $-6.71$  |
| $1, 2, 3, 4$ -P <sub>2</sub> V <sub>4</sub> W <sub>14</sub>  | h        | b                     | $-5.64$                                       | $-14.36$ |
| $16, 17, 18 - 4 - P_2Mo_3VW_{14}$                            | $-10.26$ | $-11.83$              | $-11.73$                                      | $-10.27$ |
| $1, 2, 3$ -4-P <sub>2</sub> Mo <sub>3</sub> VW <sub>14</sub> | h        | h                     | $-9.20$                                       | $-12.80$ |
| 4-1,2,3-P <sub>2</sub> MoV <sub>3</sub> W <sub>14</sub>      | $-5.46$  | $-13.92$              | $-5.41$                                       | -13.97   |
| $4-16, 17, 18-P_2MoV_3W_{14}$                                | $-6.29$  | $-12.97$              | $-13.06$                                      | $-6.32$  |
| $1,2,3,4$ -P <sub>2</sub> M <sub>04</sub> W <sub>14</sub>    | $-8.86$  | $-12.26$              | $-8.97$                                       | $-12.41$ |
| $4,16,17,18-P_2Mo_4W_{14}$                                   | $-9.73$  | $-11.36$              | $-11.50$                                      | $-9.88$  |

**'See text. \*Not observed.** 

negative charge due to the vanadium atom in the P<sub>2</sub>VW<sub>8</sub> halfanion, which protects it from basic hydrolytic cleavage. Another explanation would be the instability of the  $(1,2,3-4)$ -P<sub>2</sub> $\Box$ <sub>3</sub>VW<sub>14</sub> isomer owing to a vanadium atom bound to two unshared oxygen atoms. This would agree with the low yield obtained when  $P_2 V W_{14}$ is prepared (about  $15\%$  against  $60\%$  for  $P_2Mow_{14}$ ).

<sup>51</sup>V NMR Spectroscopy of 1,2,3- $[P_2VM_2W_{15}O_{62}]^{\prime\prime}$  (M = Mo, **V, W).** As already reported by Pope et al.,<sup>78</sup> the <sup>51</sup>V chemical shifts vary nearly linearly with the number of vanadium nuclei (Table 11); the resonance line shifts downfield by about **25** ppm by adding one V atom. The  $\delta$ <sup>(51</sup>V) values are less sensitive to tungsten-molybdenum replacement: substitution of one **Mo** for one **W** induces a minor low-field shift of only about **2.5** ppm. Although the resonance lines of the quadrupolar **51V** nucleus are relatively broad (Table 11) with respect to the narrow lines of the spin- $1/2$ <sup>31</sup>P nucleus, the wider spread of <sup>51</sup>V chemical shifts allows nevertheless a synthetic mixture of vanadium-containing Dawson polyanions to be characterized by **51V NMR** spectroscopy. The line width of the **51V** resonance increases as the number of vanadium increases; this broadening, essentially due to favorable relaxation properties of adjacent vanadium atoms, has been already observed in numerous molybdo- and tungstovanadates by Pope et al., who correlated it with the **51V** chemical shifts variations.7b

 $1^{83}$ W NMR Spectroscopy of 1,2,3- $[P_2VM_2W_{15}O_{62}]^{n}$  (M = V, W). Before we discuss the <sup>183</sup>W NMR chemical shifts, it must be remembered that all tungsten resonances appear as more or less resolved doublets because of coupling with the phosphorus atom. The coupling constant  ${}^2J_{p-w}$  is invariably significantly smaller (about **1** Hz or less) for the polar tungstens than for the equatorial ones (about 1.5 Hz or more);<sup>15</sup> this observation is very helpful for the assignment.

The **I8,W NMR** spectra of mono- and disubstituted vanadium compounds are represented in Figure 4 with those of  $\alpha - P_2 W_{18}^{15}$ and  $1,2,3-P_2V_3W_1s^{12}$  for comparison (Table IV).

Substitution of vanadium for tungsten in the polar group induces a loss of all symmetry elements of the initial Dawson anion except one vertical plane containing the unique polar atom, and we expect therefore a spectrum of nine lines for both  $P_2VW_{17}^{19}$  and  $P_2V_2W_{16}$ anions. The twelve equatorial tungsten atoms are responsible for six lines (two **W** each) in both anions; the polar atoms give three lines of relative intensities 1:2:2 in  $P_2VW_{17}$  and 1:1:2 in  $P_2V_2W_{16}$ . The line assignments for each group (polar or equatorial) were made on the basis of the tungsten-phosphorus coupling constants (see above).

**A** first general remark can be made: the resonances of all equatorial tungsten nuclei are always upfield, reasonably well displaced from the resonances of all polar nuclei. The spread of the polar resonances is about (lower than) **80** ppm around **-120**  ppm and that of the equatorial resonances is markedly smaller (about **50** ppm around **-200** ppm).

Domaille<sup>20</sup> first noted that in Keggin-substituted polyanions,

<sup>(19)</sup> It should be noted that our <sup>183</sup>W NMR spectrum of authentic  $1-P_2 VW_{17}$  is in complete disagreement with that published by Acerete et al.<sup>15</sup> The compound prepared by following the synthetic principle reported by<br>Acerete gives 183W and 3<sup>1</sup>P NMR spectra very similar to those of the<br>monovacant  $\alpha_2$ -P<sub>3</sub>W<sub>17</sub> anion, and its <sup>31</sup>V NMR spectrum exhibits many<br>broad re



Figure 4. (a) Left: 20.8-MHz <sup>183</sup>W NMR spectra of  $\alpha$ -octadeca(tungstovanado)diphosphates, about 0.5 M in aqueous solution, where  $A = P_2W_{18}$ ,  $\mathbf{B} = \mathbf{P}_2 \mathbf{V} \mathbf{W}_{11}$ ,  $\mathbf{C} = \mathbf{P}_2 \mathbf{V}_2 \mathbf{W}_{16}$ , and  $\mathbf{D} = \mathbf{P}_2 \mathbf{V}_3 \mathbf{W}_{15}$ . (b) Right:  $\delta^{(183)}\mathbf{W}$  values of polar **W** as a function of vanadium substitution in  $\mathbf{P}_2 \mathbf{W}_{18}$ . W<sub>A</sub> r the tungstens adjacent to vanadium, W<sub>B</sub>, the tungstens "symmetry-related"<sup>21</sup> to vanadium, and W<sub>C</sub>, the tungstens "non-symmetry-related" to vanadium. The star represents the mean value of  $W_B$  and  $W_C$ .





*"6* reported at -158, -179. and -226.7 ppm **by** Domaille et a1.I2

the tungsten atoms in the same triad as the substituent are always the more deshielded nuclei and that tungsten atoms comer coupled to the substituent are generally the more shielded of all **W's.** It may then be surprising that, in these Dawson substituted polyanions, W atoms adjacent to the vanadium are in all cases at the low-field part of the corresponding absorption region (see Figure **4).** Let us recall that the assignment of the lines of W adjacent to vanadium is very easy: these lines are relatively broad with respect to the other <sup>183</sup>W NMR lines. This broadening due

*<sup>(20)</sup>* (a) Domaille, **P.** J. *J. Am. Chem. Soc.* 1984,106,7677. **(b)** Domaille, **P.** J.; Knoth, **W.** H. *Inorg. Chcm.* **1983,** *22,* **818.** 





**Figure 5.** (a) Left: 20.8-MHz <sup>183</sup>W NMR spectra of  $\alpha$ -octadeca(molybdotungsto)diphosphates, about 0.5 M in aqueous solution, where  $A = P_2W_{18}$ ,  $B = P_2M_0W_{17}$ ,  $C =$  solution containing about (composition determined by the integration of the NMR lines)  $70\% P_2M_0W_{16}$ ,  $20\% P_2M_0W_{15}$ ,  $8\%$  $P_2M \text{ oW}_{17}$ , and  $2\%$   $P_2W_{18}$  (arrows indicate the  $P_2M\text{o}_2W_{16}$  lines), and  $D = P_2M\text{o}_3W_{15}$ . In C, note the easy observation of the low abundance highly symmetric P<sub>2</sub>W<sub>18</sub> anion. (b) Top Right: Expansion of the high-frequency part (polar tungsten resonances) of spectrum C. The resonance lines of individual anions are marked by 1 for  $P_2W_{18}$ , 2 for  $P_2M_0W_{17}$ , 3 for  $P_2M_0W_{16}$ , and 4 for  $P_2M_0W_{15}$ . (c) Bottom Right:  $\delta(^{183}W)$  values of polar W as a function of molybdenum substitution in  $P_2W_{18}$ .  $W_A$  represents the tungstens adjacent to molybdenum,  $W_B$ , the tungstens symmetry-related<sup>21</sup> to molybdenum, and W<sub>C</sub>, the tungstens non-symmetry-related to molybdenum.

to partial coalescence of the vanadium-tungsten octuplet has been experimentally and theoretically thoroughly investigated by Domaille.20a

**Chemical Shifts of the Polar Tungsten Atoms.** The three lines of the mono- and divanadium anions are easily assigned on the following basis: (i) the resonance of W in the substituted  $PV_xW_{\varphi_x}$ half-anion appears as a broad line; (ii) the remaining two lines (doublets) are assigned according to their intensities (one and two W in the PW<sub>9</sub> half-anion).

The tungsten adjacent to the vanadium atom is significantly deshielded with respect to  $\alpha$ -P<sub>2</sub>W<sub>18</sub> by about 20 ppm per vanadium atom (see Figure 4b). For the opposite polar group **(PW,** halfanion), the chemical shifts of the tungsten nuclei also only depend on their position relative to the vanadium atoms. The tungsten atoms "non-symmetry-related" to the vanadium atoms<sup>21</sup> are nearly unaffected and keep the same chemical shift as in  $\alpha$ -P<sub>2</sub>W<sub>18</sub>, but

the other tungsten atoms are considerably shielded by about **35**  ppm with respect to  $\alpha$ -P<sub>2</sub>W<sub>18</sub> (Figure 4). This observation is in someways disconcerting in that these **W** atoms are at the farthest (through space as well as through bond) location of the perturbing **V** atom. Consequently, the barycenter of **183W** chemical shifts of this polar group varies quasi linearly with the number of vanadium atoms in the opposite polar group (slope about **-12** ppm; see Figure 4b).

**Variation of the Chemical Shifts of the Equatorial Tungsten** with **the Number of Vanadium Atoms.** The number of tungstentungsten satellites, their duplication by coupling with the phosphorus nuclei, and the degeneracy of some coupling constants do not allow a complete assignment of the resonance lines, which would require a correlation spectroscopy experiment. Therefore, we will not discuss individual line displacements but rather the barycenter of these lines. It appears that the mean value of the chemical shifts of the equatorial tungsten decreases by about **10**  ppm per vanadium atom substitution, i.e. about **-172** ppm for the unsubstituted  $\alpha$ - $P_2W_{18}$  anion<sup>15</sup> to about -204 ppm for the trisubstituted  $1, 2, 3 - P_2V_3W_{15}$  compound.<sup>12</sup>

**<sup>(2</sup> I)** 'Symmetry-related" nuclei are nuclei that occupy locations related through the horizontal symmetry plane of the initial Dawson anion  $(D_{jk})$ , for example positions 1 and 16, 2 and 17, and 3 and 18.

Table **V.** <sup>183</sup>W NMR Data for α-Octadeca(molybdotungsto)diphosphates<sup>a</sup>

|                                                                 | $\alpha$ -P <sub>2</sub> W <sub>18</sub> <sup>b</sup> | $P_2M_0W_{17}$                                   | $P_2Mo_2W_{16}$                                    | $P_2Mo_3W_{15}c$        |
|-----------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------|
| polar $183W$ in PMo <sub>x</sub> $W_{\phi_{\text{rx}}}$ subunit |                                                       | $-124.2$ (2 W) (1 Hz)                            | $-121.3$ (1 W) (1 Hz)                              |                         |
| polar <sup>183</sup> W in<br>PW <sub>o</sub> subunit            | $-126.5$ (6 W) (1 Hz)                                 | $-128.5$ (2 W) (1 Hz)<br>$-129.5$ (1 W) (0.9 Hz) | $-130.1$ (1 W) (0.8 Hz)<br>$-132.0$ (2 W) (0.8 Hz) | $-134.2$ (3 W) (0.6 Hz) |
| $\Delta\delta$ amplitude                                        |                                                       | 5.3                                              | 10.7                                               |                         |
| equatorial<br>183W                                              | $-172.0$ (12 W)                                       | $-170.0$ (2 W)                                   |                                                    |                         |
| all                                                             |                                                       | $-172.8$ (2 W)                                   | 173.4(2 W)<br>174.9(2 W)                           |                         |
| $2J_{W-P}$<br>about                                             |                                                       | $-175.3$ (2 W)<br>$-175.9$ (2 W)                 | $-176.0$ (2 W)                                     |                         |
| $1.7$ Hz                                                        |                                                       | $-176.1(2 W)$<br>$-177.8$ (2 W)                  | $-176.1$ (2 W)                                     |                         |
|                                                                 |                                                       |                                                  | $-179.9(2 W)$                                      | $-179.2$ (6 W)          |
|                                                                 |                                                       |                                                  |                                                    | $-180.2$ (6 W)          |
|                                                                 |                                                       |                                                  | $-182.6$ (2 W)                                     |                         |
| δ mean value<br>$\Delta\delta$ amplitude                        |                                                       | $-174.6$<br>7.8                                  | $-177.1$<br>9.2                                    | $-179.7$                |

<sup>*a*</sup> From the solution of impure  $P_2M_02W_{16}$  (except for  $P_2M_0W_{17}$ ) (coupling constant  ${}^2J_{W-1}$  in parentheses; digital resolution 0.122 Hz/pt). <sup>*b*</sup> *b* reported at **-128.1** and **-173.8** ppm **by** Acerete et *cb* reported at **-134.1, -179.3,** and -180.1 ppm by Acerete et al.lSc

Surprisingly, this shielding (upfield displacement) of the equatorial tungsten is not due to the W nuclei near the perturbation (i.e. adjacent to the vanadium atoms), which appear little affected by the substitution.

Mo, W). The <sup>183</sup>W NMR spectra of mono- and disubstituted molybdenum compounds are represented on Figure 5a with those of  $\alpha$ -P<sub>2</sub>W<sub>18</sub> and 1,2,3-P<sub>2</sub>Mo<sub>3</sub>W<sub>15</sub><sup>15</sup> for comparison. <sup>183</sup>W NMR Spectroscopy of 1,2,3-[P<sub>2</sub>MoM'<sub>2</sub>W<sub>15</sub>O<sub>62</sub>]<sup>6-</sup> (M' =

Because of the great similarity between tungsten and molybdenum, Mo-W substitution induces only limited changes of the  $183W$  chemical shifts (Table V). As the  $183W$  are also sensitive to small external perturbations, the variation of chemical shifts induced by molybdenum-tungsten substitution will be extracted from a spectrum of a mixture containing all species, i.e. a solution of the  $1,2-P_2M_0W_{16}$  anion. The individual lines of each species were previously identified from the pure compounds (except of course  $P_2M_0W_{16}$ ).

**Polar Tungsten Resonances (Figure Sb).** The three lines of the mono- and dimolybdenum anions are assigned on the following basis: the two lines (one W and two W) of the  $PW_9$  half-anion correspond to tungsten atoms, which are mutually coupled. Although the coupling constant  $(^2J_{\text{W-O-W}} \sim 10 \text{ Hz})$  is relatively small, the very weak chemical shift difference between their  $^{183}\text{W}$ resonances induce AB patterns for the tungsten satellites on both lines. Moreover, the resonance line of the W in the substituted  $P_{\text{Mo}_{x}}W_{\varphi_{-x}}$  half-anion appears only with tungsten satellites bearing large (about **20** Hz) coupling; the tungsten atoms that are able to exchange a small coupling are replaced by molybdenum. The two magnetically active isotopes of molybdenum, i.e.  $95Mo$  ( $I =$  $5/2$ ; 15.7%) and <sup>97</sup>Mo ( $I = 5/2$ ; 9.5%), do not affect the <sup>183</sup>W spectrum because their very quick relaxation leads to an effective self-decoupling of the expected sextuplets.

As for the vanadium compounds, the tungstens adjacent to the molybdenum atoms in the same trimetallic group are deshielded with respect to  $\alpha$ -P<sub>2</sub>W<sub>18</sub> (by about 2.5 ppm per Mo atom) and the tungstens in the opposite polar group are relatively shielded. But in that case, the tungstens symmetry-related to the molybdenum atom<sup>21</sup> are shielded by about -2.6 ppm per Mo atom and the remaining tungsten nucleus in the opposite polar group is only shielded by about -1.8 ppm per molybdenum atom with respect to  $\alpha$ -P<sub>2</sub>W<sub>18</sub> (Figure 5c).

As noted above, these chemical shift variations are very subtle as compared with the total chemical shift scale of the  $^{183}W$  nucleus, but it is noticeable that  $\delta$  variations are of the same order for tungsten nuclei directly bound to the perturbing Mo atom and for tungsten nuclei the most remote from this perturbation. This is very remarkable for molybdenum-substituted polyoxotungstates, since in the isocharge W-Mo substitution no dramatic charge redistribution can be involved as it is likely the case in W-V substitution.

**Equatorial Tungsten Resonances.** The total chemical shift amplitude for one species does not exceed 10 ppm (for example 9.2 ppm for  $P_2Mo_2W_{16}$ ) (Table V), and nearly all tungstentungsten couplings are degenerate; therefore, a precise assignment is impossible without a correlation spectroscopy experiment. Consequently, as for the vanadium-substituted anions, we will discuss only mean values of chemical shifts. In this case also, the center of gravity of equatorial resonances shifts regularly to high field with increasing tungsten-molybdenum substitution, but the increment per Mo atom is only  $-2.5$  ppm instead of  $-10$  ppm for vanadium substitution.

**and 1,2-3-** $[P_2Mo_2VW_{15}O_{62}]^7$ **.** These anions can be considered as deriving from  $1,2,3-\overline{P_2M_0}_3W_{15}$  by progressive substitution of vanadium for molybdenum in the trimolybdic polar group (Figure <sup>183</sup>W NMR Spectroscopy of Ternary 1-2,3-[P<sub>2</sub>MoV<sub>2</sub>W<sub>15</sub>O<sub>62</sub>]<sup>8-</sup>

Polar Tungsten Atoms (Table IV). As for the tungsten-vanadium substitution in  $P_2W_{18}$ , tungsten atoms symmetry-related<sup>21</sup> to the vanadium-substituting atoms are strongly shielded with respect to  $P_2Mo_3W_{15}$  ( $\delta = -134.2$  ppm), but in that case this shielding is markedly stronger for the divanadium compound  $(-158.8$  ppm;  $\Delta\delta$  - -24.6 ppm) than for the monovanadium one  $(-150.8 \text{ ppm}; \Delta\delta = -16.6 \text{ ppm})$ . Nevertheless, this shielding induced by the polar molybdenum-vanadium substitution in P2M03W *,5* appears significantly less important than the constant shielding ( $\Delta \delta = -33$  ppm) induced by the polar tungsten-vanadium substitution in  $P_2W_{18}$ . The other tungsten atoms in the polar group (i.e. those symmetry-related<sup>21</sup> to the molybdenum atoms) are only slightly shielded (by about  $-1.2$  ppm per vanadium atom) as they are in the substitution derivatives of  $P_2W_{18}$ .

As a result of both effects, the <sup>183</sup>W interline separation in the polar group of  $P_2Mo_{3-x}V_xW_{15}$  anions is about two times smaller than in the  $P_2(\overline{V_x}W_{3-x})\overline{W}_{15}$  compounds (respectively 20 and 40 ppm; Table IV).

These experimental results can be discussed also by focusing onto the isocharge tungsten-molybdenum substitution, i.e. on onto the isocharge tungsten-molybdenum substitution, i.e. on comparing the  $\Delta\delta$  in the  $P_2V_2W_{16} \rightarrow P_2M_0V_2W_{15}$  substitution comparing the  $\Delta\delta$  in the P<sub>2</sub>V<sub>2</sub>W<sub>16</sub>  $\rightarrow$  P<sub>2</sub>MoV<sub>17</sub> substitution. Although with their values in the P<sub>2</sub>W<sub>18</sub>  $\rightarrow$  P<sub>2</sub>MoW<sub>17</sub> substitution. Although in the second case the replacement of one W by one Mo induces minor high-field shifts on both types of **Is3W** in the opposite polar group (see above; Table V), in the first case the tungsten atom symmetry-related<sup>21</sup> to Mo is shielded by 15 ppm whereas the other two tungsten atoms are deshielded by 4 ppm (with respect to  $P_2V_2W_{16}$ ). The same difference of behavior in the tungstenmolybdenum substitution is also to be noted for the  $P_2VW_{17} \rightarrow$  $P_2Mo_2VW_{15}$  path: in that case too the two tungsten atoms sym-



**Figure 6**. (a) Left: 20.8-MHz <sup>183</sup>W NMR spectra of *α*-tri(molybdovanado)pentadecatungstodiphosphates, about 0.5 M in aqueous solution, where <br>A = P<sub>2</sub>MoV<sub>2</sub>W<sub>15</sub> and B = P<sub>2</sub>Mo<sub>2</sub>VW<sub>15</sub>. (b) Right:  $\delta(^{183}W)$  values the tungstens symmetry-related<sup>21</sup> to molybdenum, and W<sub>B</sub>, the tungstens symmetry-related to vanadium.

metry-related to molybdenum atoms are shielded (by 10 ppm), but the other tungsten atom is strongly deshielded by **14** ppm.

It appears then that the effect of tungsten-molybdenum substitution in a polar group **on** the **Ig3W** chemical shifts in the opposite polar group strongly depends **on** the nature of the neighboring atoms of the substituting molybdenum atom.

**Syntheses.** Until now all the known 1,2,3-P<sub>2</sub>MM'<sub>2</sub>W<sub>15</sub> (M, M' = Mo, V, W) complexes have been prepared by refilling the lacuna of a mono- or multivacant species. Like tungstate, molybdate can be added stepwise to multivacant species. So P<sub>2</sub>Mo<sub>2</sub>W<sub>15</sub> has been obtained from  $P_2W_1$ <sub>5</sub> and has been used as a synthetic intermediary (Scheme **I).** 

Unlike molybdate, the addition of vanadate to **P2W15** always leads to the "saturated"  $P_2V_3W_{15}$  species. As  $P_2W_{16}^{7,10}$  is not a stable intermediary, we have had to find a new route for preparing the compounds with two vanadium atoms. **31P NMR** spectra of a mixture of  $P_2Mo_3W_{15}$  and vanadate show that it is easy to gradually substituate vanadium for molybdenum (Scheme **11).**  All the steps are slow at ambient temperature, and the equilibria are reached only after several months. The final composition depends on the  $V/Mo$  ratio. For instance when 2 equiv of  $HVO<sub>4</sub><sup>2</sup>$ anion is added to a solution of  $P_2M_0W_{15}$ , the formation of **P2MoV,W15** is almost complete after **3** months (Figure **7).** 

The gradual addition of vanadate to a solution of  $P_2W_{18}$  gives the same sequence, all the substitutions occurring in only one W<sub>3</sub>O<sub>13</sub> group. Attempts for further substitutions in the other **W301,** group were unsuccessful. It is the only case of specific substitution. It has been shown that the reaction of bivalent transition-metal ions with  $P_2W_{18}$  in acetate buffer leads to a mixture of  $\alpha_1$  and  $\alpha_2$  isomers of  $P_2MW_{17}.^{22}$  In the same conditions the substitution of molybdenum for tungsten gives a mixture of numerous  $P_2Mo_nW_{17-n}$  compounds.

The study of octadeca(molybdotungsto)diphosphates had shown that their acidobasic behavior is almost identical with that of  $P_2W_{18}$ and in particular that progressive alkalinization gives<sup>17</sup> monovacant and multivacant lacunar compounds that can be refilled by



Figure 7. 101.2-MHz <sup>31</sup>P NMR spectra of an aqueous solution of pure  $\alpha$ -(1,2,3)-[P<sub>2</sub>Mo<sub>3</sub>W<sub>15</sub>O<sub>62</sub>]<sup>6-</sup> (0.01 M) added to 2 equiv of HVO<sub>4</sub><sup>2-</sup>: (A) after **5** h, (B) after **3** months. The resonance lines **of** the mixed anions are marked by "a" for  $P_2M_0W_{15}$ , "b" for  $P_2M_0W_{15}$ , "c" for  $P_2M_0$  $V_2W_{15}$ , and "d" for  $P_2V_3W_{15}$ . The stars indicate  $P_2Mo_2W_{16}$ , which appears transiently.

molybdate or tungstate and so give back new saturated species with different **Mo/W** ratios. On the contrary, vanadium increases the negative charge of the anion and so shifts the stability of the saturated species to higher pH. This effect being relatively weaker in lacunary species, their pH range of formation gets narrower or disappears. So monovacant species containing vanadium are unknown. Therefore, an important new route to synthesize *oc***tadeca(mo1ybdotungstovanado)diphosphates** is the gradual **sub**stitution of vanadium for tungsten or molybdenum.

**<sup>(22)</sup>** Jorris, T. **L.;** Kozik, M.; Casan-Pastor, **N.;** Domaille, P. J.; Finke, R. G.; Miller, W. K.; Baker, L. C. **W.** *J. Am. Chem.* **Soc. 1987,109,7402.**